Transformation
Implementation of various normalizers for time series data.
- class ecgan.utils.transformation.DataTransformation[source]
Bases:
abc.ABC
A base class for transformations to inherit from.
- transform(data)[source]
Apply a transformation on a numpy array of data points.
Requires an already fitted transformation.
- Return type
Tensor
- Returns
Transformed data.
- fit_transform(data)[source]
First apply the fit and then perform the transformation on given data.
The 2D case as well as the 3D case are transformed along the columns. In 2D this is useful for a typical feature matrix but not often useful for time series data where one might want to transform along the rows or the whole dataset. If you want to transform time series data, one way would be to use 3D transformation with shape (samples x sequence_length x 1).
- Return type
Tensor
- class ecgan.utils.transformation.MinMaxTransformation[source]
Bases:
ecgan.utils.transformation.DataTransformation
Min-Max normalizer: scales the input to [0,1].
- class ecgan.utils.transformation.StandardizationTransformation[source]
Bases:
ecgan.utils.transformation.DataTransformation
Standardize the data such that it is distributed to N(0,1).
- class ecgan.utils.transformation.WhiteningTransformation(fudge=1e-16)[source]
Bases:
ecgan.utils.transformation.DataTransformation
Apply a Whitening transformation on data.
The Whitening transformation returns decorrelated data i.e. data with unit covariance matrix.
- class ecgan.utils.transformation.FFTTransformation[source]
Bases:
ecgan.utils.transformation.DataTransformation
Compute the 2D or 3D discrete Fourier transform using the PyTorch FFT implementation.
- class ecgan.utils.transformation.SamplewiseMinmaxTransformation[source]
Bases:
ecgan.utils.transformation.DataTransformation
Scales each sample to the [0, 1] range.
MinMaxTransformation scales in the same way but per channel, not per sample.
- class ecgan.utils.transformation.NoTransformation[source]
Bases:
ecgan.utils.transformation.DataTransformation
Apply no transformation.