Custom Types
Custom enums of supported functionality and types of for the ecgan library.
- class ecgan.utils.custom_types.AnomalyDetectionStrategies(value)[source]
Bases:
enum.Enum
Implemented strategies for anomaly detection.
- class ecgan.utils.custom_types.Transformation(value)[source]
Bases:
enum.Enum
Implemented transformations which can be set before passing data to a module.
- class ecgan.utils.custom_types.SplitMethods(value)[source]
Bases:
enum.Enum
Available split methods.
- class ecgan.utils.custom_types.SampleDataset(value)[source]
Bases:
enum.Enum
Available datasets a DatasetSampler can sample from.
- class ecgan.utils.custom_types.InverseMappingType(value)[source]
Bases:
enum.Enum
Available inverse mappings.
- class ecgan.utils.custom_types.ReconstructionType(value)[source]
Bases:
enum.Enum
Different ways to reconstruct data using an already trained GAN generator.
- class ecgan.utils.custom_types.DiscriminationStrategy(value)[source]
Bases:
enum.Enum
Different ways to discriminate data using an already trained GAN discriminator.
- class ecgan.utils.custom_types.SimilarityMeasures(value)[source]
Bases:
enum.Enum
Methods to calculate the similarity between two series.
- class ecgan.utils.custom_types.MetricOptimization(value)[source]
Bases:
enum.Enum
Supported methods to optimize weighted errors regarding their weighting for a total anomaly score.
- class ecgan.utils.custom_types.LabelingStrategy(value)[source]
Bases:
enum.Enum
Determine how the points shall be labeled.
WARNING: The strategy chosen has implications on the output format. POINTWISE returns a label for each datapoint in each series. ACCUMULATE_UNIVARIATE returns a label for each univariate series. ACCUMULATE_MULTIVARIATE returns a label for each multivariate series.
- class ecgan.utils.custom_types.SamplingAlgorithm(value)[source]
Bases:
enum.Enum
Different down- or upsampling algorithms which can be used during preprocessing.
- class ecgan.utils.custom_types.MetricType(value)[source]
Bases:
enum.Enum
Supported evaluation metrics.
- class ecgan.utils.custom_types.WeightInitialization(value)[source]
Bases:
enum.Enum
Different strategies to inititalize weights in neural networks.
- class ecgan.utils.custom_types.InputNormalization(value)[source]
Bases:
enum.Enum
Supported normalization layers.
- class ecgan.utils.custom_types.LatentDistribution(value)[source]
Bases:
enum.Enum
Supported latent distributions which can be set via config.
- class ecgan.utils.custom_types.TrackerType(value)[source]
Bases:
enum.Enum
Supported trackers that can be set via config.
- class ecgan.utils.custom_types.PlotterType(value)[source]
Bases:
enum.Enum
Different types of plotters.
- class ecgan.utils.custom_types.SklearnAveragingOptions(value)[source]
Bases:
enum.Enum
Additional Sklearn type stubs for the available F-score averaging options.
More information on the respective effects: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html
- class ecgan.utils.custom_types.SklearnSVMKernels(value)[source]
Bases:
enum.Enum
SVM kernels supported by ECGAN from sklearn.
More informations can be found in the official [docs] (https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html)