Layers
Custom torch layers for neural architectures.
- class ecgan.utils.layers.MinibatchDiscrimination(in_features, out_features, kernel_dims=16, calc_mean=False)[source]
- Bases: - torch.nn.modules.module.Module- Minibatch discrimination layer based on https://gist.github.com/t-ae/732f78671643de97bbe2c46519972491. 
- class ecgan.utils.layers.MinibatchDiscriminationSimple[source]
- Bases: - torch.nn.modules.module.Module- From Karras et al. 2018. 
- ecgan.utils.layers.initialize_weights(network, init_config)[source]
- Initialize weights of a Torch architecture. - Currently supported are: - 'normal': Sampling from a normal distribution. Parameters: mean, std 
- 'uniform': Sampling from a uniform distribution. Parameters: upper_bound,
- lower_bound 
 
- 'he': He initialization . He, K. et al. (2015) 
- 'glorot': Glorot, X. & Bengio, Y. (2010) 
 - Biases and BatchNorm are not initialized with this function as different strategies are applicable for these tensors/layers. Therefore the standard initialization of PyTorch when creating the layers is taken in these cases. - Return type
- None